Derivative of a Bernstein Polynomial

with B (t) = ()t'(1—t)"", i=0..n, we get
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Now we show that a Bernstein Polynomial has just one maximum in [0,1], at t=i/n:
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(Dt='(1 = t)*'~* can be zero in t=0 or t=1, additionally we are left with:
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So we can have a maximum at three positions, so let’s check them:

Case:t=0 BI0) = (?)Oiln_i. Ifi+# 0 the term is 0; ifi = 0 we have (2)001"= 1 which is a maximum
cause 0 < B*(t) <1 fort€ (0,1). But that fits with t = % t=-=0.

Case2t=1 BP1) = (7)1°0"""Ifi # n the term is 0; if i = n we have (7)1"1°= 1 which is a maximum

cause 0 < BP(t) < 1fort€ (0,1). But that fits with t = % t=2=1

n

Case 3. For all other t, t € (0,1), we have an extremum at i To prove that it's a maximum we can examine

the second derivative or we argument another way:
The cases t = 0 and t = 1 are already checked and B{*(0) =0, B]'(1) = 1 fori < 0 < n and

Bf(i) > 0 fori < 0 <n, so it must be a maximum.
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